当前位置:首页  论文论著

论文论著

2021年度成果列表

发布者:段明铿发布时间:2023-04-25浏览次数:279

第一资助论文:

1.       Chai R., J. Mao, H. Chen, Y. Wang, X. Shi, M. Jin, T. Zhao, F. Hoffman, D. Ricciuto, and S. Wullschleger, 2021: Human-caused long-term changes in global aridity. npj Climate and Atmospheric Science, 4, 65, https://doi.org/10.1038/s41612-021-00223-5.

2.       Chen X., and T. Li, 2021: An Improved Method for Defining Short-term Climate Anomalies, Journal of Meteorological Research, 35, 1012-1022, https://doi.org/10.1007/s13351-021-1139-2.

3.       Gong Y., and T. Li, 2021: Mechanism for Southward Shift of Zonal Wind Anomalies During the Mature Phase of ENSO. Journal of Climate, 34, 8897-8911, https://doi.org/10.1175/JCLI-D-21-0078.1.

4.       Hamadalnel M., Z. Zhu, R. Lu, M. Almazroui, and S. Shahid, 2021: Evaluating the aptitude of GCMs from CMIP5 and CMIP6 in capturing the historical observations of monsoon rainfall over Sudan from 1946-2005. International Journal of Climatology, 42, 2717-2738, https://doi.org/10.1002/joc.7387.

5.       Hao X., J. Li, H. Wang, H. Liao, Z. Yin, J. Hu, Y. Wei, and R. Dang, 2021: Long-term health impact of PM2.5 under whole-year COVID-19 lockdown in China. Environmental Pollution, 290, 118118, https://doi.org/10.1016/j.envpol.2021.118118.

6.       Hsu P.-C., K. Chen, C. Tsou, H. Hsu, C. Hong, H. Liang, C. Tu, and A. Kitoh, 2021: Future changes in the frequency and destructiveness of landfalling tropical cyclones over East Asia projected by high-resolution AGCMs. Earth's Future, 9, e2020EF001888, https://doi.org/10.1029/2020EF001888.

7.       Hu F., and T. Li, 2021: Effects of MJO Vertically Tilted Structure on Its Phase Speed from the Moisture Mode Theory Perspective. Journal of Climate, 34, 4505-4520, https://doi.org/10.1175/JCLI-D-20-0732.1.

8.       Hua W., M. Qin, A. Dai, L. Zhou, H. Chen, and W. Zhang, 2021: Reconciling human and natural drivers of the tripole pattern of multidecadal summer temperature variations over Eurasia. Geophysical Research Letters, 48, e2021GL093971. https://doi.org/10.1029/2021GL093971

9.       Jiang F., W. Zhang, F.-F. Jin, M. Stuecker, and R. Allan, 2021: El Niño pacing orchestrates inter-basin Pacific-Indian ocean interannual connections. Geophysical Research Letters, 48, e2021GL095242, https://doi.org/10.1029/2021GL095242.

10.    Jiang L., and T. Li, 2021: Impacts of Tropical North Atlantic and Equatorial Atlantic SST Anomalies on ENSO. Journal of Climate, 34, 5635-5655, https://doi.org/10.1175/JCLI-D-20-0835.1.

11.    Li J., F. Li, S. He, H. Wang, and Y. Orsolini, 2021: The Atlantic Multidecadal Variability phase dependence of teleconnection between the North Atlantic Oscillation in February and the Tibetan plateau in March. Journal of Climate, 34, 4227-4242, https://doi.org/10.1175/JCLI-D-20-0157.1.

12.    Li T., L. Wang, and F. Hu, 2021: Recent advances in understanding MJO propagation dynamics. Science Bulletin, 66, 2448-2452, https://doi.org/10.1016/j.scib.2021.08.005.

13.    Li W., G. Tan, and T. Li, 2022: Relationship between the Interannual and Intraseasonal Temperature Variability in Northeast China. International Journal of Climatology, 42, 352-366, https://doi.org/10.1002/joc.7247.

14.    Li Y., H.-N. Cheung, and W. Zhou, 2021: Asymmetric Relationship Between Mid-latitude Eurasian Circulation and Summer Rainfall in Hong Kong in Different Phases of ENSO, Frontiers in Earth Science,9, 642588, https://doi.org/10.3389/feart.2021.642588.

15.    Liu C., W. Zhang, F. Jiang, M. Stuecker, and Z. Huang, 2021: Record-low WNP tropical cyclone activity in early summer 2020 due to Indian Ocean warming and Madden-Julian Oscillation activity. Geophysical Research Letters, 48, e2021GL094578, https://doi.org/10.1029/2021GL094578..

16.    Liu Q., T. Li, and W. Zhou, 2021: Impacts of Multi-Timescale Circulations on Meridional Moisture Transport. Journal of Climate, 34, 8065-8085, https://doi.org/10.1175/JCLI-D-20-0126.1.

17.    Liu Q., T. Li, and W. Zhou, 2022: Impacts of Multi-timescale Circulations on Meridional Heat Transport. International Journal of Climatology, 42, 2153-2168, https://doi.org/10.1002/joc.7357.

18.    Liu S., J. Wang, J. Wei, and H. Wang, 2021: Hydrological simulation evaluation with WRF-Hydro in a large and highly complicated watershed: The Xijiang River basin. Journal of Hydrology: Regional Studies, 38, 100943, http://doi.org/10.1016/j.ejrh.2021.100943.

19.    Liu X., X. Lu, S. Zhang, et al., Z. Wei, N. Wei, S. Zhang, H. Yuan, W. Shangguan, S. Liu, J. Huang, L. Li, X. Ye, J. Zhou, W. Hu, and Y. Dai, 2022: Plant drought tolerance trait is the key parameter in improving the modeling of terrestrial transpiration in arid and semi-arid regions. Atmospheric and Oceanic Science Letters, 15, 100139, https://doi.org/10.1016/j.aosl.2021.100139.

20.    Lu Q., J. Rao, Z. Liang, D. Guo, J.-J. Luo, S. Liu, C. Wang, and T. Wang, 2021: The sudden stratospheric warming in January 2021. Environmental Research Letters, 16, 084029, https://doi.org/10.1088/1748-9326/ac12f4.

21.    Pan X., W. Wang, T. Li, F. Xin, and J.-H. Yu, 2021: Cause of an extreme warm and rainy winter in Shanghai in 2019. International Journal of Climatology, 41, 4684–4697, https://doi.org/10.1002/joc.7094.

22.    Qin C., T. Li, J. Liu, and M. Bi, 2021: A Mechanism for Formation of the Western North Pacific Monsoon Trough: Nonlinear Upscale Cascade. Climate Dynamics, 56, 3889–3898, https://doi.org/10.1007/s00382-021-05672-5.

23.    Shi J, 2021: Reexamining the decadal variation in the ENSO-East Asian winter monsoon relationship. Geophysical Research Letters, 48, e2021GL094208. https://doi.org/10.1029/2021GL094208

24.    Sun Y., H. Chen, S. Zhu, J. Zhang, and J. Wei, 2021: Influence of the Eurasian spring snowmelt on summer land surface warming over Northeast Asia and its associated mechanism. Journal of Climate, 34, 4851-4869.

25.    Tang T., J.-J. Luo, K. Peng, L. Qi, and S. Tang, 2021: Over-projected Pacific warming and extreme El Niño frequency due to CMIP5 common biases. National Science Review, 8, nwab056, https://doi.org/10.1093/nsr/nwab056.

26.    Tian B., and K. Fan, 2021: Absence of Tropical Cyclone Genesis Over the Western North Pacific in July 2020 and Its Prediction by CFSv2, Frontiers in Earth Science, 9, 771172, https://doi.org/10.3389/feart.2021.771172.

27.    Wang T., and T. Li, 2021: Factors Controlling the Diversities of MJO Propagation and Intensity. Journal of Climate, 34, 6549-6563. https://doi.org/10.1175/JCLI-D-20-0859.1.

28.    Wang X., T. Li, and C. He, 2021: Impact of the mean state on El Niño induced western North Pacific anomalous anticyclone during its decaying summer in AMIP models. Journal of Climate, 34, 9201-9217, https://doi.org/10.1175/JCLI-D-20-0747.1.

29.    Wang Z., T. Li, and Y. Sun, 2021: Interdecadal Variability of Intensity of the Madden-Julian Oscillation. Atmospheric Science Letters, 22, e1027, https://doi.org/10.1002/asl.1027.

30.    Wei W., and S. Yang, 2021: Interaction between South Asian high and Indian summer monsoon rainfall. Indian Summer Monsoon: El Niño Teleconnections and Beyond, Eds. Chowdary J., A. Parekh and C. Gnanaseelan, Elsevier, 319-334, https://doi.org/10.1016/B978-0-12-822402-1.00016-8.

31.    Xue A., W. Zhang, J. Bouncharel, and F.-F. Jin, 2021: Anomalous tropical instability wave activity hindered the development of the 2016/2017 La Niña. Journal of Climate, 34, 5583-5600, https://doi.org/10.1175/JCLI-D-20-0399.1.

32.    Yang J., H. Chen, Y. Song, S. Zhu, B. Zhou, and J. Zhang, 2021: Atmospheric circumglobal teleconnection triggered by spring land thermal anomalies over West Asia and its possible impacts on early summer climate over North China. Journal of Climate, 34, 5999-6021, https://doi.org/10.1175/JCLI-D-20-0911.1.

33.    Yang Y.-M., J.-H. Park, S.-I. An, B. Wang, and X. Luo, 2021: Mean sea surface temperature changes influence ENSO-related precipitation changes in the mid-latitudes. Nature Communications, 12, 1495, https://doi.org/10.1038/s41467-021-21787-z.

34.    Yin Z., Y. Zhang, H. Wang, and Y. Li, 2021: Evident PM2.5 Drops in the East of China due to the COVID-19 Quarantines in February. Atmospheric Chemistry and Physics, 21, 1581-1592, https://doi.org/10.5194/acp-21-1581-2021.

35.    Zeng J., J. Li, X. Lu, Z. Wei, W. Shangguan, S. P. Zhang, Y. Dai, and S. L. Zhang, 2022: Assessment of global meteorological, hydrological and agricultural drought under future warming based on CMIP6. Atmospheric and Oceanic Science Letters, 15, 100143, https://doi.org/10.1016/j.aosl.2021.100143.

36.    Zhang D., Y. Huang, B. Zhou, and H. Wang, 2021: Is there interdecadal variation in the South Asian High? Journal of Climate, 34, 8089-8103, https://doi.org/10.1175/JCLI-D-21-0059.1.

37.    Zhang L., J. Zhao, J.-S. Kug, X. Geng, H. Xu, J.-J. Luo, J.-H. Park, and R. Zhan, 2021: Pacific warming pattern diversity modulated by Indo-Pacific sea surface temperature gradient. Geophysical Research Letters, 48, e2021GL095516, https://doi.org/10.1029/2021GL095516.

38.    Zhang W., F. Jiang, M. Stuecker, F.-F. Jin, and A. Timmermann, 2021: Spurious North tropical Atlantic precursors to El Niño. Nature Communications, 12, 3096, https://doi.org/10.1038/s41467-021-23411-6.

39.    Zhang Y., Z. Yin, H. Wang, and S. He, 2021: 2020/21 Record-breaking Cold Waves in East of China Enhanced by the “Warm Arctic-Cold Siberia” Pattern. Environmental Research Letters, 16, 094040, https://doi.org/10.1088/1748-9326/ac1f46.

40.    Zhu Y., and T. Li, 2021: Dynamic and thermodynamic modulations of the convectively coupled equatorial waves by the MJO. Environmental Research Communications, 3, 025004, https://doi.org/10.1088/2515-7620/abeafa.

41.    董莹, 尹志聪, 段明铿, 2021: 长三角地区冬季霾污染日数的季节预测. 大气科学学报, 44, 290-301, https://doi.org/10.13878/j.cnki.dqkxxb.20200525001.

42.    卢睿, 朱志伟, 李天明, 潘晓, 江叶艳, 陆雅君, 2021: 淮河流域夏季极端降水频次空间分布的客观分类及其形成机理. 大气科学, 45, 1415-1432, https://doi.org/10.3878/j.issn.1006-9895.2105.20223

43.    姚梦莹, 朱志伟, 卢睿, 姚俊强, 2021: 中国西北5月和9月地表气温的年际变率机理及其预测. 大气科学, https://doi.org/10.3878/j.issn.1006-9895.2111.21124. (online)

第二资助论文:

1.       Chen H., E. Schneider, and Z. Zhu. 2022: Internal atmospheric variability of net surface heat flux in reanalyses and CMIP5 AMIP simulations. International Journal of Climatology, 42, 63-80, https://doi.org/10.1002/joc.7232.

2.       Chen P., B. Sun, H. Wang, and B. Zhu, 2021: Possible impacts of December Laptev sea ice on Indian Ocean dipole conditions during spring. Journal of Climate, 34, 6727–6943, https://doi.org/10.1175/JCLI-D-20-0980.1.

3.       Dai H., and K. Fan, 2021: An effective downscaling model for operational prediction of summer precipitation over China, Atmospheric Research, 257, 105621, https://doi.org/10.1016/j.atmosres.2021.105621.

4.       Ding L., T. Li, and Y. Sun, 2021: Subseasonal and synoptic variabilities of precipitation over the Yangtze River Basin in the summer of 2020. Advances in Atmospheric Sciences, 38, 2108-2124, https://doi.org/10.1007/s00376-021-1133-8.

5.       Fan H., B. Huang, S. Yang, and W. Dong, 2021: Influence of the Pacific Meridional Mode on ENSO Evolution and Predictability: Asymmetric Modulation and Ocean Preconditioning, Journal of Climate, 34, 1881–1901, https://doi.org/10.1175/JCLI-D-20-0109.1.

6.       Ham Y.-G., J.-G. Kim, J.-G. Lee, T. Li, M.-I. Lee, S.-W. Son, and Y.-K. Hyun, 2021: The origin of systematic forecast errors of extreme 2020 East Asian Summer Monsoon rainfall in GloSea5. Geophysical Research Letters, 48, e2021GL094179, https://doi.org/10.1029/2021GL094179.

7.       Jiang F., W. Zhang, F.-F. Jin, and M. F. Stuecker, 2021: Meridional migration of ENSO impact on tropical Atlantic precipitation controlled by the seasonal cycle. Geophysical Research Letters, 48, e2021GL096365, https://doi.org/10.1029/2021GL096365.

8.       Lei X., W. Zhang, P.-C. Hsu, and C. Liu, 2021: Distinctive MJO activity during the boreal winter of 2015/16 super El Niño in comparison with other super El Niño events. Advances in Atmospheric Sciences, 38, 555-568, https://doi.org/10.1007/s00376-020-0261-x.

9.       Ma X., and Z. Yin, 2021: Dipole Pattern of Summer Ozone Pollution in the east of China and Its Connection with Climate Variability. Atmospheric Chemistry and Physics, 21, 16349-16361, https://doi.org/10.5194/acp-21-16349-2021.

10.    Pan X., T. Li, Y. Sun, and Z. Zhu, 2021: Cause of extreme heavy and persistent rainfall over Yangtze River in summer 2020. Advances in Atmospheric Sciences, 38, 1994-2009, https://doi.org/10.1007/s00376-021-0433-3.

11.    Song Y., and J. Wei, 2021: Diurnal cycle of summer precipitation over the North China Plain and associated land–atmosphere interactions: Evaluation of ERA5 and MERRA-2. International Journal of Climatology, 41, 6031-6046.

12.    Tang S., J.-J. Luo, J. He, J. Wu, Y. Zhou, and W. Ying, 2021: Toward understanding the extreme floods over Yangtze River Valley in June-July 2020: Role of tropical oceans. Advances in Atmospheric Sciences, 38, 2023-2039, https://doi.org/10.1007/s00376-021-1036-8.

13.    Wei J., Y. Liu, and H. Chen, 2021: Contrasting responses of local climate to the perturbation of atmospheric boundary layer winds linked to land-atmosphere interactions. Journal of Geophysical Research: Atmospheres, 126, e2020JD034508.

14.    Wu J., Y. Li, J.-J. Luo, and X. Jiang, 2021: Assessing the Role of Air-Sea Coupling in Predicting Madden-Julian Oscillation with an Atmosphere-Ocean Coupled Model. Journal of Climate, 34, 9647-9663, https://doi.org/10.1175/JCLI-D-20-0989.1.

15.    Xu X., S. He, Y. Gao, B. Zhou, and H. Wang, 2021: Contributors to linkage between Arctic warming and East Asian winter climate. Climate Dynamics, 57, 2543-2555, https://doi.org/10.1007/s00382-021-05820-x.

16.    Yang H., and K. Fan, 2021: Strengthened Impacts of November Snow Cover over Siberia on the Out-of-phase Change in the Siberian High between December and January since 2000 and Implication for Intraseasonal Climate Prediction, Frontiers in Earth Science, 9, 748484, https://doi.org/10.3389/feart.2021.748484.

17.    Yin Z., Y. Wan, and H. Wang, 2021: Decadal Changes of Connections among Snow cover in West Siberia, Eurasia Teleconnection and O3-related meteorology in North China. Atmospheric Chemistry and Physics, 21, 11519-11530, https://acp.copernicus.org/articles/21/11519/2021/.

18.    Zhang C., T. Li, and S. Li, 2021: Impacts of CP- and EP-El Niño events on the Antarctic sea ice in austral spring. Journal of Climate, 34, 9327-9348, https://doi.org/10.1175/JCLI-D-21-0002.1.

19.    Zhang W., Z. Huang, F. Jiang, M. Stuecker, G. Chen, and F.-F. Jin, 2021: Exceptionally persistent Madden-Julian Oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophysical Research Letters, 48, e2020GL091588, https://doi.org/10.1029/2020GL091588.

20.    Zhou H., and K. Fan, 2021: Intensified impact of winter Arctic Oscillation on simultaneous precipitation over the mid–high latitudes of Asia since the early 2000s, Frontiers in Earth Science, 9, 782388, https://doi.org/10.3389/feart.2021.782388. 

21.    肖哨, 田宝强, 范可, 2021: CFSv2模式对春季逐月南极涛动预测效能及成因分析, 气候与环境研究, 26, 621–636, https://doi.org/10.3878/j.issn.1006-9585.2021.20146.

其他资助论文:

1.       Xue J., T. Doi, J.-J. Luo, C. Yuan, and T. Yamagata, 2021: Predictability of the Chile Niño/Niña. Geophysical Research Letters, 48, e2021GL095309, https://doi.org/10.1029/2021GL095309.

2.       Zhang T., X. Jiang, J. Chen, S. Yang, Y. Deng, W. Wei, P. Hu, and P. Gao, 2021: Interannual variability of springtime extreme heat events over the southeastern edge of the Tibetan Plateau: Role of a spring-type circum-global teleconnection pattern. Journal of Climate, 34, 9915–9930, https://doi.org/10.1175/JCLI-D-21-0049.1.

3.       Zhao Y., Z. Wen, X. Li, R. Chen, and G. Chen, 2021: Structure and maintenance mechanisms of the Mascarene High in austral winter, International Journal of Climatology, 42, 4700-4715, https://doi.org/10.1002/joc.7498.

4.       Hu Y., B. Zhou, T. Han, H. Li, and H. Wang, 2021: Out-of-phase decadal change in drought over Northeast China between early spring and late summer around 2000 and its linkage to the Atlantic sea surface temperature. Journal of Geophysical Research: Atmospheres, 126, e2020JD034048, https://doi.org/10.1029/2020JD034048.

5.       Yang X., B. Zhou, Y. Xu, and Z. Han, 2021: CMIP6 Evaluation and Projection of Temperature and Precipitation over China. Advances in Atmospheric Sciences, 38, 817-830, https://doi.org/10.1007/s00376-021-0351-4.

6.       Huang W., Y. Yu, Z. Yin, H. Chen, and M. Gao, 2021: Appreciable role of stratospheric polar vortex in the abnormal diffusion of air pollutant in North China in 2015/2016 winter and implications for prediction. Atmospheric Environment, 15, 118549, https://doi.org/10.1016/j.atmosenv.2021.118549.

软件著作权:

1.     马洁华, 孙建奇, 于恩涛, 王会军, 2021: IAP-NZC短期气候预测系统1.0.


上一篇:下一篇: